Homeostatic mini-intestines through scaffold-guided organoid morphogenesis

  • 1.

    Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • 2.

    Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • 3.

    Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    PubMed 
    CAS 

    Google Scholar
     

  • 4.

    van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • 6.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • 7.

    Wang, Y. et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell. Mol. Gastroenterol. Hepatol. 5, 113–130 (2018).

    PubMed 

    Google Scholar
     

  • 8.

    Wang, Y. et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128, 44–55 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 9.

    Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 10.

    de Lau, W. et al. Peyer’s patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol. Cell. Biol. 32, 3639–3647 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Basak, O. et al. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20, 177–190 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • 12.

    Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • 13.

    Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • 14.

    Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • 15.

    Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 16.

    Kiesler, P., Fuss, I. J. & Strober, W. Experimental models of inflammatory bowel diseases. Cell. Mol. Gastroenterol. Hepatol. 1, 154–170 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Kotloff, K. L. The burden and etiology of diarrheal illness in developing countries. Pediatr. Clin. North Am. 64, 799–814 (2017).

    PubMed 

    Google Scholar
     

  • 18.

    Heo, I. et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3, 814–823 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 19.

    Wilke, G. et al. A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability. Cell Host Microbe 26, 123–134 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 20.

    Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    PubMed 
    CAS 

    Google Scholar
     

  • 21.

    Kasendra, M. et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Trietsch, S. J. et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun. 8, 262 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Chen, Y., Zhou, W., Roh, T., Estes, M. K. & Kaplan, D. L. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE 12, e0187880 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Workman, M. J. et al. Enhanced utilization of induced pluripotent stem cell-derived human intestinal organoids using microengineered chips. Cell. Mol. Gastroenterol. Hepatol. 5, 669–677 (2018).

    PubMed 

    Google Scholar
     

  • 25.

    Wang, Y. et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell 179, 1144–1159 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 26.

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • 27.

    Wang, Y. et al. Bioengineered systems and designer matrices that recapitulate the intestinal stem cell niche. Cell. Mol. Gastroenterol. Hepatol. 5, 440–453 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Nikolaev, M. et al. Bioengineering microfluidic organoids-on-a-chip. Protoc. Exch. https://doi.org/10.21203/rs.3.pex-903/v1 (2020).

  • 29.

    Koliaraki, V. & Kollias, G. Isolation of intestinal mesenchymal cells from adult mice. Bio-protocol 6, e1940 (2016).


    Google Scholar
     

  • 30.

    Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 31.

    Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • 32.

    Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 33.

    Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protocols 8, 2471–2482 (2013).

    PubMed 
    CAS 

    Google Scholar
     

  • 34.

    Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • 36.

    Chen, C. et al. Bioengineered bile ducts recapitulate key cholangiocyte functions. Biofabrication 10, 034103 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 37.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 38.

    Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS 

    Google Scholar
     

  • 39.

    Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 40.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 41.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • 42.

    Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 43.

    Kolotuev, I. Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production. Microsc. Microanal. 20, 1392–1403 (2014).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • 44.

    Burel, A. et al. A targeted 3D EM and correlative microscopy method using SEM array tomography. Development 145, dev160879 (2018).

    PubMed 

    Google Scholar
     

  • 45.

    Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 46.

    Nakato, G. et al. New approach for M-cell-specific molecules screening by comprehensive transcriptome analysis. DNA Res. 16, 227–235 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 47.

    Hartl, M. & Schneider, R. A unique family of neuronal signaling proteins implicated in oncogenesis and tumor suppression. Front. Oncol. 9, 289 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Funda, D. P. et al. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect. Immun. 69, 3772–3781 (2001).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 49.

    Nakamura, Y., Kimura, S. & Hase, K. M cell-dependent antigen uptake on follicle-associated epithelium for mucosal immune surveillance. Inflamm. Regen. 38, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Hase, K. et al. Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium and M cells. DNA Res. 12, 127–137 (2005).

    PubMed 
    CAS 

    Google Scholar
     

  • 51.

    Dillon, A. & Lo, D. D. M cells: intelligent engineering of mucosal immune surveillance. Front. Immunol. 10, 1499 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 52.

    Lim, J. S. et al. Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model. Biochem. Biophys. Res. Commun. 390, 1322–1327 (2009).

    PubMed 
    CAS 

    Google Scholar
     

  • 53.

    Terahara, K. et al. Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008).

    PubMed 
    CAS 

    Google Scholar
     

  • 54.

    Hase, K. et al. The membrane-bound chemokine CXCL16 expressed on follicle-associated epithelium and M cells mediates lympho-epithelial interaction in GALT. J. Immunol. 176, 43–51 (2006).

    PubMed 
    CAS 

    Google Scholar
     

  • 55.

    Kanaya, T. & Ohno, H. The mechanisms of M-cell differentiation. Biosci. Microbiota Food Health 33, 91–97 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • This post first appeared on Here